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Scaling properties of conductance at integer quantum Hall plateau transitions
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We investigate the scaling properties of zero-temperature conductances at integer quantum Hall plateau
transitions in the lowest Landau band of a two-dimensional tight-binding model. Scaling is obeyed for all
energy and system sizes with critical expon@m%. The arithmetic average of the conductance at the
localization-delocalization critical point is found to H&).=0.506?/h, in agreement with the universal
longitudinal conductancéo,,) = %ezlh predicted by an analytical theory. The probability distribution of the
conductance at the critical point is broad with a dip at sr@al[S0163-18288)01532-X

The transitions between the integer quantum H&IH) recent extensive and direct numerical sttidyn mesoscopic
plateaus are believed to be a manifestation of the localizatiosystems with the network modelhowever, produceds,
to delocalization transition in two-dimensional electron sys-=(0.58+ 0.03)e?/h, in disagreement with the analytical pre-
tems in the presence of a strong magnetic field. Thaliction and previous numerical results. Given the fact that
phenomenchis characterized at finite temperatures by thethe two-terminal conductand® is not exactly the same as
appearance of a conductance peak as the Hall conductantfe longitudinal conductivityr,,, the small but significant
varies continuously between the precisely quantized valuedifference appears to be resolvéa favor of a new univer-
with the change of applied magnetic fi¢ldhe existence of sal value for the two-terminal conductan@g. Experimental
both extended and localized states is required to describe thigtempts® to measure the conductance directly have not pro-
fascinating phenomenon. Following extensive experimentafluced consistent values. o _
and theoretical investigation, a consistent picture has Unlike the Hall conductance, which is exactly quantized
emerged on the nature of this remarkable transition. In a tw@S & consequence of topological invariance, the longitudinal

dimensional disordered noninteracting electron system, ex¢onductance itself is a sample-dependent quantity for meso-

tended states do not exist as a result of Anderson localizatich®P'® systems with electron coherent lengths exceeding the

except at a singular energy near the center of each of th%ample dimension. The universality of the critical conduc-

Landau subbands® The localization length diverges at these tance in principle applies only to macroscopic systems in
. : R . which self-averaging is expected. It is not clear at the present
critical energies ag~|E—E¢|™", signifying a continuous

o what average procedure will produce the experimentally ob-
zero-temperature quantum phase transition. Electron condugg,\ e quantity. Fluctuation has been the halimark of quan-

t|oE clos;teI to ttf;]e tranf;]tlo? IS l(?ontf‘m”‘fd gtﬁh; ratio tOf the {um transport in mesoscopic systémand its characteristics
conerent length over the localization 1en € System - yovide important clues on the system as a whole. It is there-

size increases or, equivalently, as the temperature decrea re equally interesting to investigate the probability distri-

t|_c|) lzler_o folr macrfc_)sc(;)plc _samplehs, the systgmbscales to Stab&%tion of the conductance. In particular, it is important to ask
all “insulator fixed points characterized byok,oxy)  \yhether, under appropriate conditions, the distribution of the

_ 2
_(Xinr?e /hh' has b hed h cgnductancd’(G) approaches a limiting universal form. In
though a consensus has been reached on the g€Neidtee-dimensional disorder-driven metal-insulator transi-

p'Ct“r‘?’ several f“r_‘damef“a' ISSUEs remain unsolved. Orgbns, strong evidence exists on the universality of the con-
such issue, the universality of the transition, has attracteq},.iance distribution in the metallic and insulating phases as
much gttentlon recently.Based on Qhern—&mon:_s_formal— well as at the critical poirt®” The physical arguments for
ISm, K|velsor_1, Lee, and Zhafigredicted a2 transition be- the existence of such a universality can be equally applied to
tween quantized plateausrf,oxy) =(0n)e/h and (On 0 |ocalization-delocalization transition in two-dimensional
+1)e?/h with universal critical points §,n+3)e’h, inde-  systems=3!8 Conductance distributions at IQH plateau tran-
pendent of the microscopic details of any models. Such unisitions have been investigated for the network model &hly.
versality at the quantum critical point has also been sugThe results compared well with the recent experimental mea-
gested previously.The universality of the critical exponents surement on mesoscopic systethis.

appears to have been borne out in all the latest numerical In this paper, we investigate the scaling properties of the
studies with different microscopic modétd.’8These works  conductance as well as the critical conductance and its dis-
produced values consistent with experimental measureribution in a two-dimensional system described by a tight-
menf~** and close to the analytical predicted vafue=3  binding model. This is perhaps the simplest system that ex-
for quantum percolation. The universality of,, however, hibits the correct critical behavior of the localization-
is still controversial. Extrapolation of dynamical conductiv- delocalization transition. To our knowledge, no such
ity from Kubo formalism8 and from spectra function calculations have been previously reported for the tight-
calculation$ on short-ranged potentials produced values inbinding model. Our aim is to determine accurately the criti-

reasonable agreement withl,=3 at the critical point. A cal zero-temperature two-terminal conductance in the tight-
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binding model and to see whether there is universality, at
least between the tight-binding model and the network + 16 @ (b) (©
model investigated by Waret al*® Our results are in agree- 050 6342 f=i/8] 1} e i .
ment with the scaling hypothesis and a critical exponent of sqr 96 W= %E% 8
v=2%. More importantly, based on finite size scaling analy- diai2s &g ¢ % ! osl g °
sis, we obtair(G.)=0.506 at the critical point, very close to ~ *“[¥'% #% | %% o % - g4
the value expected from analytical thedBy= %, but in dis- 3 M Poa e : 9
agreement with the recent extensive numerical study on the So3f f% %06 é % -f&ﬁ- & §
network model3 This difference, if it persists, has important 9 & 53; \ .9 g
implications on the universality of the two-terminal critical 0zl f:é’ &8s 1 04 f % oal # ¢ |
conductance. We have also analyzed the distribution of the 9 o i g i 4
conductance at the critical point. The moments of the distri- f::é‘ %:xtﬁ * % Y i
bution are surprisingly similar to that of the network model. %[ - ;1 2 P | 02 ¢ e |

The tight-binding Hamiltonian is given as follows: oﬁi @g‘w % f %

a . o
- (E-E ) M"Y 2 (E—E(:) w2

H=2 6i|i><i|+z (t;li)(jl+c.c), 1)
! (i FIG. 1. Average conductandes) in the lowest Landau band.

. . . N ... (a) Conductance vs energy fol =16, 32, 64, 96, 128, 160, and

wheree is a random site energy “'T“for_m'y dlsmbUt?d within 192. Normalized conductance as a function of scaled variable

[—W/2, W/2]. The_ complex h_opplng m_tegra,-lj carries the  =|E—E,M™ with E,= —3.40 andv=2.37 for the arithmeticb)

phase due to applied magnetic fields via the standard Peierlg, e geometric) average. The number of samples for each data

substitution, point ranges from 50 foM =192 and 10 000 foM =16.
to=t-exd — i2me 15\ di @) scaling stud$” on the localization length, the critical point of
ij = X he Ji™ ) the lowest Landau level at this field and disorder strength is

accurately known to be &= —3.40. At this disorder, all
The sum is carried over the nearest-neighbor gitgsonly. Landau bands show substantial band mixing except the low-
t, is taken as the unit of energy. Periodic boundary condi€st one. For disordered mesoscopic systems at zero tempera-
tions are applied in the transverse direction. In continuumiure, electrons propagate through the entire sample without
quantized Landau levels under a magnetic field are broad>€ing scattered inelastically by phonons. Scattering by ran-
ened into Landau bands by impurity scattering. In latticedom static impurity, on the other hand, produces
models, Landau bands form even in ordered systems asG@nfiguration-dependent conductance fluctuations. We
result of degeneracy breaking. These bands will be furthepresent in Fig. (@ the averaged conductang&) in the
broadened by disorder. The lowest Landau band in the tightowest Landau band for different system sizes. The conduc-

binding model has been shoiwo describe the quantum Hall tance clearly peaks at the critical enegy= — 3.40 and falls
transition well. rapidly away fromE;. As the system size increases, the

To calculate the zero-temperature two-terminal conducconductance curve become narrower and the peak conduc-
tance numerically, we employ the transfer matrix methodtance increases. The continuing narrowing of the width of
which obtains the final transmission matrix by multiplica- the conductance curve as system size increases indicates that
tions and inversions of transfer matrix. The disorderedn the macroscopic limit, only the states at the critical energy
square sample of sizBl XM is sandwiched between two can transport electrons across the sample, in agreement with
perfect leads of the same width. Both the sample and th#ée conventional picture that all states are localized except at
leads are governed by the tight-binding Hamiltoniah No  the center of the bant.
disorder exists in the leads. The two-terminal conductance is An important property is the scaling of the conducta@ce
then given by the following multichannel Landauer as a function of the system size. According to the finite size

formula?? scaling idea, the conductance is expected to be determined
solely by the ratio of the localization length to the system
e? dimensionM close to critical point. However, there is known
G= FTr(TTT), 3 irrelevant finite size corrections such that the scaling is modi-
fied as
whereT is the total transmission matrix through the disor G(E,M)=G(E,,M)f(£(E)/M), 4

dered sample with the propagating channels in the leads as

basis. Keep in mind thab defined here is for one spin only. where(E) is the macroscopic localization length at energy
For the purpose of investigating the scaling and the criti-£ and f(x) is a universal function. The size dependence of

cal conductance, we have chosen a fixed magnetic field sughe conductance maximurG(E.,M) represents the irrel-

that the flux per square is one-eighth of the flux quantumeyant finite size corrections,

(f=1/8) and a disorder strengiW=4. If universality per-

sists, both the critical exponent and the critical conduc- Go(E¢,M)=G,—aM Vir, (5)

tance(G.) are expected not to depend on the applied field

and the disorder strength. Based on a previous finite sizdltilizing é~|E—E| ™", we obtain the expression
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FIG. 2. Conductance at the critical pointG(E.,M)), as a G (e’/h) G (e?/h)
function of system siz& for square samples &fl X M. The lines
are least square fits ®4(E.,M)=G.—aM Yir, The error bars are FIG. 3. Distribution of the conductand® at the critical point
smaller than the size of the symbols. E.= —3.40 for different sample size¢a) M =16, (b) M=32, (¢

M =64, and(d) M =128. Each size has more than 10 000 samples.
Distributions atM =192 (not shown hereare almost identical with
G(E,M)=G(E.,M)f(|[E—E.| "/M) that of M =128 within the statistical fluctuation.

=G(E¢,M)F(|E-E¢[MY). (6)
=0.506 andy;,, =0.72 as the best fit with a goodness of fit
O<p=0.12. Fits withQ larger than 0.1 are believable. We have

Should scaling exist in our system as expected, then all < ) .
g 4 P also used the projection mettfddo estimate the confidence

our data for differenE andM would collapse on one curve .
provided the correct values &, and v are chosen. The limit. Brackets 0f[0.499,0.51] and[0.495,0.517T are ob-

results of such a scaling procedure are shown in Hig). fbr tained with a confidence level of 95.4% and 99.73%, respec-
arithmetic average witk,= —3.40 and the best fit=2.37. tively. Our results agree with the analytical assertion that the
Scaling behavior is clearly established. Deviation fdr  universal longitudinal conductand®, is 3. The difference
=16 and for higher energf is due to the finite size effect between our results for the tight-binding model and the
and the effect of mixing with higher bands, respectively.equally extensive results for the network motfeff it per-
Thus scaling of conductance around the critical points indisSists, could indicate that the critical two-terminal conduc-
cates a critical exponent consistent with a universal value tance is not universal. The extrapolated value for the geomet-
={. The same scaling is obeyed for the geometric averageic average igG.)4=0.438 withy;, =0.52 and a goodness
shown in Fig. 1c) with exactly the same critical exponent. of fit Q=0.50. An interesting remark is that from the re-
Of central importance is the exact value of the conducported value of higher moments &, we infer that in the
tance at the critical point. As mentioned before, due to thenetwork model, the geometrically averaged conductance
finite size correction from irrelevant fields, the conductancegG),~0.5.
at the critical point depends on system size. In Fig. 2, we The distribution of the conductance also shows interesting
present the arithmetic and geometric averaged conductan@eoperties. At the critical point, this distribution is broad and
at the critical point,E.=—3.40. G(E.,M) increases with ranges between 0 and 1. Fluctuations, as measured by the
increasing sizeM and will eventually saturate at the critical standard deviation, are of the same order of magnitude as the
conductancés; for macroscopic systems. This is in contrastaverage conductance itself. For localized state, the distribu-
to the constant amplitude ratiat E. for the finite size lo- tion is known to be Poissonlike. At critical points, it has been
calization length. We mention that in order to achieve goodoroposed that the conductance distribution should be univer-
statistics, more than 10 000 samples are takenMioup to  sal independent of the size of the system. This assertion is
160 and 8 000 samples fol =192. To extrapolate to mac- based on the fact that there is no length scale since the lo-
roscopic systems, we have fitted our data to @&g.with a  calization length diverges at the critical point. However, we
least square figshown as lines in Fig.)3The most likely fit ~ know there is non-negligible finite size corrections to the
is determined by minimizing thg? statistics> scaling, as shown in the analysis of tBe. Thus, the con-
ductance distribution at the critical point does show size de-
2_2 G(E.;,M;)—G4(E.;,M))|? pendences$Figs. 3a)—3(d)]. The probability distribution is
X = i : ' (7) broad, ranging from 0 to 1. It also shows progressive devel-
opment of a dip aroun@=0 as the whole distribution flat-
tens. For two-dimensiondPD) systems, analytical descrip-
where the summationis over all the system sizes ang is  tions of the statistical distribution of the conductance are
the standard deviation of G(E.,M)). We obtain G, lacking. Eventually for very large sizes, the distribution satu-
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rates to the final, presumably universal, distribution for mac-has much better central tendency. The universality of these
roscopic systems. Calculation of higher moment of the condistributions will be examined in future work.
ductance,(G"), results in values 0.08, 0.013, 0.003, and

0.001 forn=2, 4, 6, and 8, respectively. These values Ames Laboratory is operated for the U.S. Department of
closely resemble the results reported by Wa@l® The  Energy by lowa State University under Contract No. W-

probability distribution at the 2D quantum critical point is 7405-ENG-82. This work was supported by the Director of

quite different from that of the 3D systeffig’. We also Energy Research, Office of Basic Energy Science, and Ad-
point out that the distribution in 1@, although not Gaussian, vanced Energy Projects.
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